Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polarization observations of the Milky Way and many other spiral galaxies have found a close correspondence between the orientation of spiral arms and magnetic field lines on scales of hundreds of parsecs. This paper presents polarization measurements at 214μm toward 10 filamentary candidate “bones” in the Milky Way using the High-resolution Airborne Wide-band Camera on the Stratospheric Observatory for Infrared Astronomy. These data were taken as part of the Filaments Extremely Long and Dark: A Magnetic Polarization Survey and represent the first study to resolve the magnetic field in spiral arms at parsec scales. We describe the complex yet well-defined polarization structure of all 10 candidate bones, and we find a mean difference and standard deviation of −74° ± 32° between their filament axis and the plane-of-sky magnetic field, closer to a field perpendicular to their length rather than parallel. By contrast, the 850μm polarization data from Planck on scales greater than 10 pc show a nearly parallel mean difference of 3° ± 21°. These findings provide further evidence that magnetic fields can change orientation at the scale of dense molecular clouds, even along spiral arms. Finally, we use a power law to fit the dust polarization fraction as a function of total intensity on a cloud-by-cloud basis and find indices between −0.6 and −0.9, with a mean and standard deviation of −0.7 ± 0.1. The polarization, dust temperature, and column density data presented in this work are publicly available online.more » « lessFree, publicly-accessible full text available December 15, 2026
-
Abstract Stars primarily form in galactic spiral arms within dense, filamentary molecular clouds. The largest and most elongated of these molecular clouds are referred to as “bones,” which are massive, velocity-coherent filaments (lengths ∼20 to >100 pc, widths ∼1–2 pc) that run approximately parallel and in close proximity to the Galactic plane. While these bones have been generally well characterized, the importance and structure of their magnetic fields (B-fields) remain largely unconstrained. Through the Stratospheric Observatory for Infrared Astronomy Legacy program FIlaments Extremely Long and Dark: a Magnetic Polarization Survey (FIELDMAPS), we mapped the B-fields of 10 bones in the Milky Way. We found that their B-fields are varied, with no single preferred alignment along the entire spine of the bones. At higher column densities, the spines of the bones are more likely to align perpendicularly to the B-fields, although this is not ubiquitous, and the alignment shows no strong correlation with the locations of identified young stellar objects. We estimated the B-field strengths across the bones and found them to be ∼30–150μG at parsec scales. Despite the generally low virial parameters, the B-fields are strong compared to the local gravity, suggesting that B-fields play a significant role in resisting global collapse. Moreover, the B-fields may slow and guide gas flow during dissipation. Recent star formation within the bones may be due to high-density pockets at smaller scales, which could have formed before or simultaneously with the bones.more » « lessFree, publicly-accessible full text available December 15, 2026
-
Abstract TheB-field Orion Protostellar Survey (BOPS) recently obtained polarimetric observations at 870μm toward 61 protostars in the Orion molecular clouds with ∼1″ spatial resolution using the Atacama Large Millimeter/submillimeter Array. From the BOPS sample, we selected the 26 protostars with extended polarized emission within a radius of ∼6″ (2400 au) around the protostar. This allows us to have sufficient statistical polarization data to infer the magnetic field strength. The magnetic field strength is derived using the Davis–Chandrasekhar–Fermi method. The underlying magnetic field strengths are approximately 2.0 mG for protostars with a standard hourglass magnetic field morphology, which is higher than the values derived for protostars with rotated hourglass, spiral, and complex magnetic field configurations (≲1.0 mG). This suggests that the magnetic field plays a more significant role in envelopes exhibiting a standard hourglass field morphology, and a value of ≳2.0 mG would be required to maintain such a structure at these scales. Furthermore, most protostars in the sample are slightly supercritical, with mass-to-flux ratios ≲3.0. In particular, the mass-to-flux ratios for all protostars with a standard hourglass magnetic field morphology are lower than 3.0. However, these ratios do not account for the contribution of the protostellar mass, which means they are likely significantly underestimated.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Abstract We present a study connecting the physical properties of protostellar envelopes to the morphology of the envelope-scale magnetic field. We used the Atacama Large Millimeter/submillimeter Array (ALMA) polarization observations of 61 young protostars at 0.87 mm on ~400–3000 au scales from theB-field Orion Protostellar Survey to infer the envelope-scale magnetic field, and we used the dust emission to measure the envelope properties on comparable scales. We find that protostars showing standard hourglass magnetic field morphology tend to have larger masses, and the nonthermal velocity dispersion is positively correlated with the bolometric luminosity and dust temperature of the envelope. Combining with the disk properties taken from the Orion VLA/ALMA Nascent Disk and Multiplicity survey, we connect envelope properties to fragmentation. Our results show a positive correlation between the fragmentation level and the angle dispersion of the magnetic field, suggesting that the envelope fragmentation tends to be suppressed by the magnetic field. We also find that protostars exhibiting standard hourglass magnetic field structure tend to have a smaller disk and smaller angle dispersion of the magnetic field than other field configurations, especially the rotated hourglass, but also the spiral and others, suggesting a more effective magnetic braking in the standard hourglass morphology of magnetic fields. Nevertheless, significant misalignment between the magnetic field and outflow axes tends to reduce magnetic braking, leading to the formation of larger disks.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Abstract CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trendN∝Ms, wheres= 0.38 ± 0.03 is near the pressure-bounded limitsp= 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s−1, mean external pressure (0.5–4) × 108cm−3K, bound clump fraction 0.06, and typical virial parameterα= 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources andN–Mtrends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps.more » « less
-
Abstract We present 870μm polarimetric observations toward 61 protostars in the Orion molecular clouds with ∼400 au (1″) resolution using the Atacama Large Millimeter/submillimeter Array. We successfully detect dust polarization and outflow emission in 56 protostars; in 16 of them the polarization is likely produced by self-scattering. Self-scattering signatures are seen in several Class 0 sources, suggesting that grain growth appears to be significant in disks at earlier protostellar phases. For the rest of the protostars, the dust polarization traces the magnetic field, whose morphology can be approximately classified into three categories: standard-hourglass, rotated-hourglass (with its axis perpendicular to outflow), and spiral-like morphology. A total of 40.0% (±3.0%) of the protostars exhibit a mean magnetic field direction approximately perpendicular to the outflow on several × 102–103au scales. However, in the remaining sample, this relative orientation appears to be random, probably due to the complex set of morphologies observed. Furthermore, we classify the protostars into three types based on the C17O (3–2) velocity envelope’s gradient: perpendicular to outflow, nonperpendicular to outflow, and unresolved gradient (≲1.0 km s−1arcsec−1). In protostars with a velocity gradient perpendicular to outflow, the magnetic field lines are preferentially perpendicular to outflow, with most of them exhibiting a rotated hourglass morphology, suggesting that the magnetic field has been overwhelmed by gravity and angular momentum. Spiral-like magnetic fields are associated with envelopes having large velocity gradients, indicating that the rotation motions are strong enough to twist the field lines. All of the protostars with a standard-hourglass field morphology show no significant velocity gradient due to the strong magnetic braking.more » « less
-
Abstract We present a comprehensive analysis of the evolution of envelopes surrounding protostellar systems in the Perseus molecular cloud using data from the MASSES survey. We focus our attention to the C 18 O(2–1) spectral line, and we characterize the shape, size, and orientation of 54 envelopes and measure their fluxes, velocity gradients, and line widths. To look for evolutionary trends, we compare these parameters to the bolometric temperature T bol , a tracer of protostellar age. We find evidence that the angular difference between the elongation angle of the C 18 O envelope and the outflow axis direction generally becomes increasingly perpendicular with increasing T bol , suggesting the envelope evolution is directly affected by the outflow evolution. We show that this angular difference changes at T bol = 53 ± 20 K, which includes the conventional delineation between Class 0 and I protostars of 70 K. We compare the C 18 O envelopes with larger gaseous structures in other molecular clouds and show that the velocity gradient increases with decreasing radius ( ∣ ∣ ∼ R − 0.72 ± 0.06 ). From the velocity gradients we show that the specific angular momentum follows a power-law fit J / M ∝ R 1.83±0.05 for scales from 1 pc down to ∼500 au, and we cannot rule out a possible flattening out at radii smaller than ∼1000 au.more » « less
-
Abstract We present H -band (1.65 μ m) and SOFIA HAWC+ 154 μ m polarization observations of the low-mass core L483. Our H -band observations reveal a magnetic field that is overwhelmingly in the E–W direction, which is approximately parallel to the bipolar outflow that is observed in scattered IR light and in single-dish 12 CO observations. From our 154 μ m data, we infer a ∼45° twist in the magnetic field within the inner 5″ (1000 au) of L483. We compare these new observations with published single-dish 350 μ m polarimetry and find that the 10,000 au scale H -band data match the smaller-scale 350 μ m data, indicating that the collapse of L483 is magnetically regulated on these larger scales. We also present high-resolution 1.3 mm Atacama Large Millimeter/submillimeter Array data of L483 that reveals it is a close binary star with a separation of 34 au. The plane of the binary of L483 is observed to be approximately parallel to the twisted field in the inner 1000 au. Comparing this result to the ∼1000 au protostellar envelope, we find that the envelope is roughly perpendicular to the 1000 au HAWC+ field. Using the data presented, we speculate that L483 initially formed as a wide binary and the companion star migrated to its current position, causing an extreme shift in angular momentum thereby producing the twisted magnetic field morphology observed. More observations are needed to further test this scenario.more » « less
An official website of the United States government
